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Laminar Heat and Fluid Flow Characteristic
with a Modified Temperature-Dependent Viscosity Model
in a Rectangular Duct
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The present study proposes a modified temperature-dependent non-Newtonian viscosity
model and investigates the flow characteristics and heat transfer enhancement of the viscoelastic
non-Newtonian fluid in a 2:1 rectangular duct. The combined effects of temperature dependent
viscosity, buoyancy, and secondary flow caused by the second normal stress difference are
considered. Calculated Nusselt numbers by the modified temperature-dependent viscosity model
give good agreement with the experimental results. The heat transfer enhancement of viscoelastic
fluid in a rectangular duct is highly dependent on the secondary flow caused by the magnitude
of second normal stress difference.
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Nomenclature .. .
D, : Hydraulic diameter, m Prm . Geilerallzed E’ranclifln number,
Gr*: Grashof number, (g87”D%)/ (Bres7?,rer) % (%)
Gz : Graetz number, (x/PrRe D;) ! oq refﬂ Wa/vgz
k. Heat transfer coefficient : W/ (m-+K) a - Heat ) u m
. . . .. Ra [ Rayleigh number for constant heat flux
%k Non-dimensional thermal conductivity of . .
R T boundary condition, G7»*Pr

fluid, %/ krer ) M

n . Power law index Re : Reynolds number, OresDnUava/ K

Nu : Nusselt number,

Re* ! Generalized Reynolds number,
(0resDnU%%) | K

T : Non-dimensional temperature,

EDh//;:é,,Dh//;/( Twall_ Tbulk)
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. Dimensionless temperature

S >

;i - Kronecker delta
. Dimensional state
ref . Reference state (at inlet temperature of

20C)
1. Introduction

The understanding of the fluid dynamic and
heat transfer behavior of non-Newtonian visco-
elastic fluids in laminar flow through rectangular
ducts is important because of the wide application
of such geometries. Hartnett and his coworkers
(1985; 1991 ; 1996) showed significant laminar
heat transfer enhancements (up to 300%) with
viscoelastic fluids in rectangular ducts, which had
never been observed in a circular pipe flow. Se-
veral researchers have investigated the enhance-
ment mechanism with experimental and numeri-
cal studies.

Hartnett and Kostic (1985) and Gao and Hartnett
(1996) investigated the effect of secondary flows
on non-Newtonian viscoelastic fluids in relation
to fully-developed laminar heat transfer behavior
in a rectangular duct. They used the Reiner-Riv-
lin constitutive equation with finite values for the
second normal stress coefficient, and demonstrat-
ed that the significant enhancement in heat trans-
fer was caused by a secondary flow.

Shin and Cho (1994) focused on temperature-
dependent fluid viscosity as the reason for the
heat transfer enhancement of non-Newtonian fluids
in a rectangular duct. They recorded 70~200%
heat transfer enhancements with polyacrylamide
(Separan AP-273) in contrast to a constant-pro-
perty flow. Chang et al.(1998) considered both
temperature-dependent shear thinning viscosity
and buoyancy-induced secondary flow ; however,
the resulting values of their Nusselt numbers were
smaller than previous experimental results (Gao
and Hartnett, 1996) in a fully-developed region
with a polyacrylamide solution (Separan AP-
273).

In recent years Shin et al.(1999) and Sohn et
al.(2000) conducted a computational study that
considered the effect of both temperature-depen-
dent and a normal stress-induced secondary flow

in an upper-wall-heated 2:1 aspect ratio rec-
tangular duct that suppressed free convection.
They reported that the values of the local Nusselt
numbers calculated for a polyacrylamide solution
were consistent with experimental results in both
the thermally developing and developed regions.

However, the existing temperature-dependent
viscosity model has a drawback of yielding a
non-physical phenomenon that in which viscosity
nearly approaches zero as temperature and shear
rate increase. Hence, the objective of the present
paper is to propose a modified temperature-de-
pendent non-Newtonian viscosity model and in-
vestigate heat and mass transfer characteristics in
a 2:1 rectangular duct for validating the proposed
modified model.

2. Mathematical Formulation

2.1 Governing equations

Figure 1 shows a schematic diagram of the
system for bottom wall heated case. Fluid enters
the duct with a fully developed parabolic velocity
profile and uniform temperature 7;. The heating
conditions considered in the present study follows
those in Hartnett and Kostic (1985) : a) bottom
wall heated and b) both upper and bottom wall

U(0,y,z), developed velocity profile
developed secondary flow)

REERE

q" =constant

zZ  x

y

/
RERARI

q" =constant

bottom wall heated
other walls adiabatic

Fig. 1 Physical configurations of 2:1 rectangular
duct with hydraulic and thermal boundary
conditions for bottom wall heated case



384 Chang-Hyun Sohn and Jae- Whan Chang

heated with adiabatic boundary condition at the
side walls.

A Boussinesq approximation was applied to
consider the buoyancy effect whereas the viscous
dissipation was neglected. The dimensionless gov-
erning equations for a steady three-dimensional
laminar flow of an incompressible fluid can be
expressed as follows :

Continuity

ou;

Wizo (1)

Momentum

o(uwu;) 0P | 1 ( dty; >

axj Gxi GI:S 8xj (2)
+ 8s: W T

Energy

a(aj;;h) - PrJ’lRe+ [aij ( gj} ﬂ (3)

where Grashof number (G#»*=Ra/Pr) is calcu-
lated by given experimental test conditions of
Rayleigh number Ra, and Prandtl number.

A no-slip boundary condition was applied
along the periphery of the duct for the velocity
components and 9 (u, v, w)/dx=0 and §*T/ox*=
0 were applied at the outlet.

The QUICK scheme by Hayase, Humphrey and
Greif (1992) was employed in the discretization
procedures for the convection terms of the gov-
erning equations. The convergence criterion was
set up as | g — p*=DsteP| <1077 Numerical ex-
periments were conducted to determine an ade-
quate grid number with a Newtonian fluid in a
2:1 duct. A 41 X41 uniform grid at the cross sec-
tion of the duct was chosen because the calculated
results became independent of the number of grid
points beyond a grid size of 41 X41 (Ref. Kim et
al., 1997).

2.2 Temperature-dependent viscosity models

Shi and Cho (1994) used the following tem-
perature-dependent Carreau model as the shear-
thinning temperature-dependent viscosity of a
non-Newtonian fluid.

”z’(ri’f,lg(?n _77;]; =1+ (Del0¢Dy)2] =2 (4)
where De is the Deborah number (AUavg/Dh),
£ is a constant accounting for the temperature
dependence of the time constant (1), and ¢ re-
presents the slope of the 7, verse T curve, and »
is power law index. £=—14.9 and {=—8.35 are
given for Separan Ap-273 fluid.

There is no experimental 7. value in the Shin’s
data, but 7. is non-zero value at high shear rate
and it becomes an asymptotic value as reported in
many references (Xie and Hartnett, 1992 ; Rohsenow
et al., 1998 ; Kostic, 1994).

Chang et al.(1998) used the non-Newtonian
temperature-dependent viscosity model as fol-
lows.

n=exp(—Q0) [t (70— 70) {1+ (Cu7)*}" 7] (5)

where Cu is a Carreau number (Cu=De10%D),
@ is the dimensionless temperature, Q=25 (7" D»/
kres) is a measure of magnitude of the tempera-
ture dependence for viscosity and 5=0.019 is
used.

Note that in viscosity models given by equation
(4) and (5) the viscosity becomes zero as tem-
perature increases.

In the present study we propose the modified
temperature-dependent viscosity model as fol-
lows.

n=exp(—Q0) [(m—7) {1+ (Cuy)*}" ] + 71 (6)

where 7. is the low limiting viscosity and its
value is obtained from Hartnett’s experimental
data (Xie and Hartnett, 1992) as 7,=0.00015.

Figure 2 shows a comparison of different vis-
cosity models with experimental results (Shin and
Cho, 1994). The Shin’s viscosity model shown in
Fig. 2(a) is crossing the curves at other tempera-
tures. The Chang’s viscosity model shown in Fig.
2(b) gives reasonably good agreement. However,
in the above viscosity models, as shear rate and
temperature increase, the viscosity approaches
zero even though 7. is given a non-zero value.
Figure 2(c) shows the results of the modified
viscosity model. It is seen that the limiting vis-
cosity approaches 7. as shear rate and tempera-
ture increase.
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Fig. 2 The comparison of three viscosity models
with experimental data

2.3 Reiner-Rivlin constitutive equation

Non-Newtonian viscoelastic fluids exhibit a
normal stress difference under shear flow condi-
tions. Green and Rivlin (1956) demonstrated the
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Fig. 3 Comparison of measured and calculated
velocity profile v (y)

existence of a secondary flow in an elliptical duct
flow using the following Reiner-Rivlin constitu-
tive equation.

T =07+ QY nYni (7)

where
o 5
&= (Re*/ Dn0rer) @
Gao and Hartnett (1996) applied the Reiner-
Rivlin constitutive equation using values of @

ranging from 0.003 to 0.01(0.1a<@<03a),
and they obtained heat transfer enhancement re-

(8)

sults which were consistent with the experiment-
al results reported by Xie and Hartnett (1992).
We compared calculated secondary velocity with
the LDV measured secondary velocity given by
Gervang and Larsen (1991), using various a» to
obtain a correct second normal stress difference
coefficient (a). Figure 3 shows the correct value
of a» is about 0.15 times of first normal stress
difference coefficient (@). However, Shin et al.
(1999 : 2000) have used the values of @=0.1¢a.

3. Results and Discussion

3.1 Flow characteristics
The secondary flow patterns for the case of
heated bottom wall are shown in Fig. 4. Since
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the circulating direction of the buoyancy-induced
secondary flow was in the same direction as the
lower cell of the viscoelastic-driven secondary
flow, the secondary flow near the bottom wall
increased in strength and expanded the circula-
tion region. However, the secondary flow near the
upper region circulated in the opposite direction
to the buoyancy-induced secondary flow ; there-
fore, the strength and field of the upper secondary
flow was reduced. As the flow progressed down-
stream, the secondary flow became a large single
cell in a half cross section as shown in Fig. 4(c).

The secondary flows for both top and bottom
heated wall case are shown in Fig. 5. Due to
heating, the viscosity near the top wall decrease

¢
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leading to increase in velocity and strength of
secondary flow there. However, the secondary
flow near bottom wall is seen to dominate in
strength. Therefore, the strength and field of the
upper secondary flow gradually reduced.

Figure 6 shows the calculated non-dimensional
axial velocity profiles for the Separan solution
along the vertical direction with different vis-
cosity model. Note that z=0 refers to the heated
bottom wall, z=0.5 refers to the unheated top
wall (Fig. 1), and the velocity profile at x=0.0
represents the fully developed velocity profile for
the constant-property fluid (CPF). Figure 6(a)
shows that the maximum axial velocity at the
mid-plane (i.e., at y=0.5) decreased compared to
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(a) x=0.003 (b) x=0.01 (c) x=0.02
Fig. 4 Development of secondary flow pattern along the dimensionless axial direction of case 1
(heated bottom wall)
ns &
0 @ ¢
0.3 03
z z
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¥
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(heated top and bottom wall)

(b) x=0.01

Fig. 5 Development of secondary flow pattern along the dimensionless axial direction of case 2
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that for CPF along the axial distance, whereas
the maximum axial velocity near the side wall
(i.e., at y=0.1) increased, see Fig. 6(b). Also, at
x=0.02, the location of the maximum velocity is
shifted from the center (i.e., 2=0.25) of the rec-
tangular duct compared to that at the inlet near
the heated bottom wall. However the variation in
the velocity profiles with Shin’s viscosity model
is larger than that with the present modified vis-
cosity model. Hartnett and Kostic (1985) carried
out careful pressure drop measurements of Se-
paran solution and concluded that the influence
of elasticity on pressure drop of a viscoelastic
fluid is small and that, in general, the viscoelastic
fluid behaves as a purely viscous non-Newtonian
fluid. However Shin’s viscosity model gives a
lower viscosity at high temperature and a high
shear rate and subsequently very large velocity
variation and induce large pressure drop. The
velocity profiles observed with the present model

0.5 %
i L]
0.4 ° Sins
= L) 0’
03 x=0.0 O\
"~ | @  x=0.02(Shin's model)
z ¥  x=0.02 (Modified model)
0.2 -
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0»0 i 1 I 1 I 1
0.0 0.5 1.0 1.5 2.0
Dimensionless Velocity, u
(a) y=0.5 (mid-plane)
0.5
—_— x=00
@ x=0.02 (Shin's model)
0.4 % = 0.02 (Modiied model)
0.3
z

0.2
0.1

e ® e~
0.0
0.0 0.5 1.0 1.5 2.0
Dimensionless Velocity, u
(b) y=0.1 (plane near the side wall)
Fig. 6 The comparison of two numerical results in
2:1 rectangular duct with bottom-wall heated

are consistent with the results of Hartnett and
Kostic (1985).

3.2 Heat transfer characteristics

Figures 7 and 8 show dimensionless tempera-
ture profiles calculated for CPF and Separan at
x=0.02, respectively. The temperature near the
heated bottom wall for CPF was much higher
than that of Separan solution. For example, the
temperature at the center of the bottom wall for
CPF was 0.197 whereas that for Separan solution
was 0.091. However, the temperature at the cor-
ner of top wall was much lower then Separan
solution. The temperature profile for the Separan
solution shown in Fig. 8 is much more complex
than that of CPF. This is mainly due to the dis-
tortion of the flow associated with the combin-
ed secondary flow caused by the second normal
stress difference and buoyancy effect. The mini-
mum temperature seen at y=0.5 is consistent with
the secondary flow region seen in Fig. 4.

Fig. 7 Dimensionless cross-sectional temperature
profile at x=0.02 of CPF (heated bottom
wall)

ot
- il
—
et m

top

Fig. 8 Dimensionless cross-sectional temperature
profile at x=0.02 of Separan (heated bottom
wall)



388 Chang-Hyun Sohn and Jae- Whan Chang

In order to examine the heat transfer enhance-
ment by the different temperature-dependent vis-
cosity models on the laminar heat transfer for
Separan solution, local Nusselt numbers for CPF
and Separan are shown in Figs. 9 and 10. The
heat transfer experiments (Xie and Hartnett, 1982)
were carried out with Re=511.3, Pr=54.40 and
10°Ra= 0.89 for bottom wall heated case (Fig.
9) and the corresponding values of ¢” is 1.217.
The experimental conditions of Fig. 10 for both
top and bottom wall heated case were Re=433.3,
Pr=63.7, 10"°Ra=0.69, and the obtained value of
q” is 1.104.

In the thermally-fully-developed region, the
present calculation for CPF yield a Nusselt num-
ber of 3.56, which is almost identical to the analy-

2
10° E
C Experimental data of Hartnett
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- —— - Shin's model / —
= 1 = =7
=10 -
N CPF
= — Forced convection limit
100 L IIIIIHI 11 IIIIM Ll lIIIIII L L L iiill
0 1 2 3 4
10 10 10 10 10
Gz

Fig. 9 The comparison of three numerical results
with @=0.1a; in 2:1 rectangular duct with
bottom-wall heated
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=
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Fig. 10 The comparison of three numerical results
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with @=0.1@; in 2 :1 rectangular duct with
top & bottom-wall heated

tical value of 3.54. Nusselt number of modified
viscosity model is slightly lower than that of the
other viscosity models since the calculations were
carried out with the lowest @, value (@=0.1a)
in Reiner-Rivlin constitutive equation.
However, the calculated local Nusselt numbers
with the correct value of the second normal stress
difference coefficient (a2=0.15a1) gives very good
results as shown in Figs. 11 and 12. When an
attempt was made to incorporated az=0.15a in
the other models, the agreement with the experi-
ments was very poor and the results show the
existing temperature-dependent viscosity models
exaggerate the effect of temperature-dependent
viscosity on the laminar heat transfer enhance-
ment with a very low viscosity in the regions of

2
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N - Moditied Model
[T — — Constant property fluid (CPF)
= ‘//
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=10 g -7
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Fig. 11 The comparison of two numerical results
with @=0.15a in 2:1 rectangular duct with
bottom wall heated
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Fig. 12 The comparison of two numerical results

with 2=0.15@ in 2:1 rectangular duct with
top & bottom wall heated
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high temperature and shear rate.

4. Conclusions

The present numerical study examined existing
temperature-dependent viscosity models and a
modified temperature-dependent viscosity model
on the laminar heat transfer behavior in a 2:1
rectangular duct. The key findings are as follows :

(1) The proposed temperature-dependent vis-
cosity model predicts the limiting viscosity tend-
ing to 7, even though both shear rate and tem-
perature increase.

(2) A correct second normal stress difference
coefficient is about 0.15 times of first normal
stress difference coefficient.

(3) The calculated local Nusselt numbers us-
ing the modified temperature-dependent viscosity
model with the correct value of @2 (=0.15a1) are
consistent with experimental results.

(4) The existing temperature-dependent vis-
cosity models exaggerate the effect of tempera-
ture-dependent viscosity on the laminar heat trans-
fer enhancement in a 2:1 rectangular duct with a
very low viscosity in the regions of high tempera-
ture and shear rate.

(5) The main cause of the heat transfer en-
hancement of the Separan solution is viscoelas-
tic-driven secondary flow, with buoyancy and
variable viscosity in supporting roles.
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